Изгиб балки

1) Построить эпюры \(Q_y \) и \(M_x \);
2) Определить величину нагрузки \(q \) при \(l = 500 \) мм, \(\sigma_{tp} = \sigma_{tc} = 300 \) МПа, \([n]=2\);
3) Определить угловое перемещение сечения B, \(\theta_B \) (\(E=2 \cdot 10^5 \) МПа);
4) Нарисовать примерный вид изогнутой оси балки.

1) Построение эпюр внутренних силовых факторов.

Отбросим связи, заменяя их реакциями:

\[
\sum F_y = -ql + R_1 + 2q \cdot 2l + R_2 = 0 \quad (1)
\]

\[
\sum M_B = -ql \cdot l - 2q \cdot 2l \cdot l - 2ql^2 - R_2 \cdot 2l = 0 \quad (2)
\]

Из уравнения (2) получаем:

\[
R_2 = \frac{1}{2} ql (1 - 4 - 2) = -\frac{7}{2} ql \ , \text{откуда с учетом (1) следует:} \ R_1 = q l - 4ql - R_2 = q l \left(1 - 4 + \frac{7}{2} \right) = \frac{1}{2} ql
\]

Расчетная схема с учетом истинных величин и направлений реакций имеет вид:

Строим эпюру поперечной силы:

Видно, что на участке ВС сила меняет знак, то есть эпюра \(M_x \) будет иметь экстремум. Найдем его из условия \(Q_y = 0 \):

\[
\sum F_y = -ql + \frac{1}{2} ql + 2q \cdot z_2 = 0 \rightarrow z^* = z_2 = -\frac{l}{2} \left(-1 + \frac{1}{2} \right) = \frac{l}{4}
\]

\[
\sum M_D = -ql (l + z^*) + \frac{1}{2} ql \cdot z^* + 2q \cdot z^* = M_x^* = 0 \rightarrow
\]

\[
M_x^* = q \left[-l(l+z^*)+\frac{1}{2}l \cdot z^* + z^* + 2 \right]
\]

\[
= q \left[-l \left(l+\frac{l}{4} \right) + \frac{1}{2} l \cdot \frac{l}{4} + \left(\frac{l}{4} \right)^2 \right] = ql^2 \left(-\frac{5}{4} \cdot \frac{1}{8} + \frac{1}{16} \right) = \frac{-20 + 2 + 1}{16} q l^2 = \frac{-17}{16} q l^2
\]

Найдем максимальный момент и его координату (опасное сечение):

\[
M_{max} = \max (M_C, |M_D|) = \max \left(2ql^2, \frac{17}{16} q l^2 \right) = 2ql^2; \quad z_{max} = 3l \quad (3)
\]

Опасное сечение – С. Строим эпюру момента:

2) Геометрические характеристики поперечного сечения

Рассмотрим левый нижний уголок
\[I_x = J_x + A(b - z_0)^2 \]

Данные из ГОСТ:

\[b = 36 \text{ мм}, J_x = 3.29 \text{ см}^4 = 3.29 \cdot 10^{-4} \text{ мм}^4, A = 2.75 \text{ см}^2 = 275 \text{ мм}^2, z_0 = 1.04 \text{ см} = 10.4 \text{ мм} \]

Для всего сечения

\[I_x = 4J_x + 2 \left(\frac{4 \cdot 90^3}{12} + 4 \cdot 6 \left(\frac{36 + 6}{2} \right)^2 \right) + 2 \left(\frac{90^3}{3} + 10 \cdot 6^3 + 4 \cdot 6 \cdot 39^2 \right) = 4 \left[3.29 \cdot 10^{-4} + 275(36 - 10.4)^2 \right] + 4(32900 + 180224) + 2(243000 + 720 + 365040) = 852496 + 1217520 = 2.07 \cdot 10^6 \text{ мм}^4 \]

\[y_{\text{max}} = \frac{90}{2} = 45 \text{ мм}; \quad W_x = \frac{I_x}{y_{\text{max}}} = 46000 \text{ мм}^3 \]

3) Расчет на прочность

\[n_T = \frac{\sigma_T}{\sigma_{\text{max}}}; \quad \sigma_{\text{max}} = \frac{M_{\text{max}}}{W_x} = 2qI^2 = q = \frac{\sigma_T \cdot W_x}{2I^2n_T} = \frac{300 \cdot 46000}{2 \cdot 500^2 \cdot 2} = 13.8 \text{ Н/мм} \]

4) Расчет на жесткость методом Верещагина

\[E I_x \theta_B = M_y \otimes M_1 = \frac{2L}{6} \left[1 \cdot (-2 \cdot qI^2 + 2qI^2) \right] = \frac{1}{12} \cdot 2qI^2 \cdot (2I)^3 \cdot \frac{1}{2} = 0 - \frac{8}{12} qI^3 = -\frac{2}{3} qI^3 \]

Знак «минус» говорит о том, что выбранное направление (по часовой стрелке) не соответствует действительности.

5) Расчет на жесткость методом Коши-Крылова

\[M_1 = -qlz + H(z - l) \frac{1}{2} qI^2 \cdot (z - l) + H(z - l) \cdot 2q \frac{(z - l)^2}{2} \]

\[E I_x \theta = -qI^2 \frac{2}{2} + H(z - l) \cdot \frac{1}{2} qI^2 \cdot \frac{(z - l)^2}{2} + H(z - l) \cdot 2q \frac{(z - l)^3}{6} + C_1 \]

\[E I_x v = -qI^2 \frac{2}{2} + H(z - l) \cdot \frac{1}{2} qI^2 \cdot \frac{(z - l)^2}{6} + H(z - l) \cdot 2q \frac{(z - l)^4}{24} + C_1 z + C_2 \]

Граничные условия:

1) \[z = l, v = 0 \rightarrow -qI^3l^3 \frac{3}{6} + C_1 l + C_2 = 0 \rightarrow C_2 = qI^3l^3 \frac{3}{6} - C_1 l \]

2) \[z = 3l, v = 0 \rightarrow -qI^3l^3 \frac{3}{6} + C_1 l + C_2 = 0 \rightarrow C_2 = qI^3l^3 \frac{3}{6} - C_1 l \]

\[qI^4 \left(\frac{-27}{6} + \frac{1}{2} \cdot \frac{8}{6} + \frac{216}{24} \right) + C_1 \cdot 3l + C_2 = 0 \rightarrow -\frac{5}{2} qI^4 + C_1 \cdot 3l + C_2 = 0 \rightarrow -\frac{5}{2} qI^4 + C_1 \cdot 3l + qI^3 l^3 \frac{3}{6} - C_1 l = 0 \]

\[-\frac{7}{3} qI^4 + 2l \cdot C_1 = 0 \rightarrow C_1 = \frac{7}{6} qI^3 \rightarrow C_2 = qI^3 l \frac{3}{6} - \frac{7}{6} qI^3 l = -qI^4 \]

Константы интегрирования равны: \[C_1 = \frac{7}{6} qI^3; \quad C_2 = -qI^4 \]

Функция угла поворота касательной:
\[\varphi = \frac{1}{EI_x} \left[-q l \frac{z^2}{2} + H(z - l) \cdot \frac{q l^2}{2} \cdot \frac{(z - l)^2}{2} + H(z - l) \cdot 2q \cdot \frac{(z - l)^3}{6} + 7ql^3 \right] \]

\[\varphi_B = \varphi(l) = \frac{1}{EI_x} \left[-q l^2 + \frac{7}{6} q l^3 \right] = \frac{2}{3} \frac{q l^3}{EI_x} \text{(против часовой стрелки)} \]

Результаты, полученные методами Верещагина и Коши-Крылова, равны. Проверка сошлась.

Подставив найденные значения момента инерции и интенсивности распределенной нагрузки, получаем:

\[\varphi_B = \frac{2}{3} \frac{q l^3}{EI_x} = \frac{2}{3} \frac{13.8 \cdot 500^3}{2 \cdot 10^5 \cdot 2.07 \cdot 10^6} = 0.0028 = 0.16^\circ \text{(против часовой стрелки)} \]

6) Примерный вид изогнутой оси:

7) Результаты:

\[q = 13.8 \text{ Н/мм} \]

\[\varphi_B = \frac{2}{3} \frac{q l^3}{EI_x} = 0.16^\circ \text{(против часовой стрелки)} \]

Опасное сечение – С.